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A forward-backward semiclassical method is presented for calculating correlation functions of polyatomic
systems. Unlike conventional semiclassical theories, this formulation does not require evaluation of the prefactor
that contains a determinant with elements defined by the stability matrix. It is shown rigorously that the
contribution of the semiclassical prefactor in the present formulation can be absorbed in the semiclassical
phase and initial density if the momentum jump at the end of the forward propagation is chosen to be one-
half of that dictated by the classical equations of motion. As a consequence, the number of equations of
motion to be solved in its implementation is linearly proportional to the number of degrees of freedom. The
method is applied to the dynamics of water clusters which involve strongly anharmonic interactions.

1. Introduction

Although large-scale computer simulations of many-body
systems by means of classical molecular dynamics have become
extremely common, fully quantum mechanical calculations on
such systems remain far beyond the reach of current compu-
tational capability because their cost scales exponentially with
the size of the system. An attractive compromise is the time-
dependent semiclassical method in which Planck’s constant is
treated as a small parameter compared to the classical action.
While the semiclassical propagator results from asymptotic
analysis, it offers an accurate description of quantum evolution
for short or intermediate times without requiring storage of
multidimensional functions or diagonalization of large matrices.
Since this time domain is relevant in many molecular dynamical
processes, the semiclassical method is appealing as a numerical
tool in theoretical chemistry.

The traditional analysis of semiclassical dynamics is based
on the Van Vleck propagator.1,2 The accuracy of the semiclas-
sical expression has been demonstrated in several calculations,3-6

including systems exhibiting quantum chaotic behavior.7,8 There
are two main difficulties in implementing the Van Vleck
propagator. First, one has to perform a root search in order to
identify classical trajectories satisfying double-ended boundary
conditions; and second, the expression diverges at caustics (see,
for example, refs 9 and10). Several insightful techniques have
been devised to overcome these problems in the calculation of
correlation functions. Initial value representations,4 which
replace the integral over final coordinate to one involving the
initial momentum of a trajectory, and coarse graining schemes
based on cellular dynamics11 or coherent state representations12

are proven free of these difficulties. The semiclassical propagator
involves a prefactor, a determinant whose elements are defined
by the stability (monodromy) matrix. This means that in addition

to the 2n classical equations of motion in phase space for an
n-dimensional system, one must also solve (2n)2 differential
equations determining the stability matrix, while evaluation of
the determinant requires effort proportional ton3.

Because of the linear superposition principle inherent in
quantum mechanics, both the quantum and the semiclassical
propagators are oscillatory. This behavior results in the so-called
sign problem when applied to the evaluation of physical
observables or correlation functions. A solution toward this
problem is offered by the introduction by our group of forward-
backward semiclassical dynamics (FBSD).13 A physical quantity
can in general be cast into a form of an ensemble average which
involves propagators in the forward and backward time direc-
tions. By combining the forward and backward propagations
into a single semiclassical time evolution, the oscillations
associated with these opposite in time motions can be canceled
to a large extent and the resulting integrand is sufficiently
smooth for treatment by Monte Carlo integration. The original
formulation of FBSD for the evaluation of influence functionals
in the context of a path integral description of the observable
system13,14has been extended to schemes which treat all degrees
of freedom semiclassically.15-17 The FBSD representation of
the influence functional arises if the integration connecting the
forward and backward semiclassical propagators is evaluated
by the stationary phase method and is thus completely consistent
with the spirit of the semiclassical approximation. If the
observable system is also treated semiclassically, the expression
to which one should apply the final stationary phase procedure
is not unique, leading to several versions of FBSD. A number
of studies to date have shown that the FBSD scheme is
sufficiently accurate for many situations of interest in chemical
dynamics and feasible for systems of several atoms.13,14,16-19

In a recent letter17 we described a new formulation of FBSD
for calculating semiclassical correlation functions. In this
scheme, the prefactor is compensated for by the semiclassical
phase and the expensive evaluation of the stability matrix and
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the corresponding determinant is no longer required. Compared
to the full semiclassical treatment which deals with the forward
and backward propagators separately, the new version of FBSD
reduces by a factor of 2 the number of integration variables,
guarantees a smooth integrand, and eliminates the calculation
of the prefactor. For this reason, this FBSD scheme is practical
for simulations on polyatomic systems. At the same time, owing
to the partial neglect of interference between the forward and
backward propagations (which seems to be more serious than
the corresponding neglect inherent in the semiclassical propaga-
tor within a given time direction), one can expect FBSD to be
less accurate than the fully semiclassical method. Nevertheless,
model studies17 on multidimensional anharmonic systems have
shown that FBSD gives very reasonable results over several
oscillation periods, a time length often sufficient for important
chemistry to take place. The loss of accuracy in FBSD may be
roughly understood as follows: The semiclassical method is
an asymptotic theory in which the absolute value of the classical
action is assumed to be much larger than Planck’s constant. In
FBSD, the relevant quantity is the sum of actions along the
forward and backward time contours, which are partially
canceled out with each other. As a consequence, the effective
action is not so large and the phase varies less rapidly than in
the individual propagators.

This paper presents a more detailed derivation of the new
FBSD for multidimensional systems and the results of its
application to the dynamics of water clusters. As in ref 17, we
focus on correlation functions of the type

whereH is the Hamiltonian of then-dimensional system

with m being the mass matrix and the ordinary potential energy,
A andB are two (scalar) Hermitian operators, andF(0) is the
initial density matrix. (The superscript denotes the transpose of
a matrix or of a vector.) For simplicity we assume thatB is a
function of the position operator corresponding to the observable
dynamical variable(s). It is straightforward to extend the
following discussion to an arbitrary operator that is a general
function of all phase space variables. Section II gives the
rigorous derivation of the prefactor-free FBSD in the coherent
state representation. In section III we discuss the implementation
of FBSD to study the vibrational motion of a water molecule
or cluster. Finally, section IV summarizes the present work.

II. Theory

The dynamical part in the correlation function of eq 1.1 is
the Heisenberg representation of the operator second operator,
BH ) eiHt/pBe-iHt/p. For later use we rewriteBH as a derivative
of an operator with respect to a parameterµ, namely

where

is unitary and can be regarded as the evolution operator along
a forward-backward time contour 0f t f 0 for the time-
dependent Hamiltonian

which includes an instantaneous “kick” at timet. In the
semiclassical coherent state representation,12 U(t;µ) takes the
form

Here qf,pf denote the coordinates and momenta at the end of
the forward-backward propagation,S is the corresponding
classical action, andg is a coherent state described by the wave
function

where the elements ofΓ (a diagonal matrix) are arbitrary
parameters representing the widths of the Gaussians. The
prefactorD in eq 2.4 assumes the form

The elements entering this determinant are determined from the
stability matrix

which obeys the differential equation

with the initial condition

where the matrixF has the form

The stability matrix is thus given from the solution of (2n)2

coupled first-order differential equations. Furthermore, the
numerical effort required for evaluation of the determinant is
proportional ton3. For these reasons computation of the prefactor
is prohibitive if the number of coupled degrees of freedom is
large. It is argued in ref 17 that when FBSD is formulated in
the above derivative form, one can arrange for the contribution
of the prefactor to be compensated for by other terms. In the
following we present a detailed analysis of this result, which
eliminates the need for calculating the semiclassical determinant.

C(t) ) Tr(F(0)AeiHt/pBe-iHt/p) (1.1)

H ) 1
2
pT‚m-1‚p + V(q) (1.2)

BH ) -i lim
µf0

∂

∂µ
U(t;µ) (2.1)

U(t;µ) ) eiHt/peiµBe-iHt/p (2.2)

H(t′) ) H - pµδ(t′ - t)B (2.3)

U(t;µ) ) (2πp)-n∫dq0∫dp0D(q0,p0;qf,pf)

× exp( i
p
S(q0,p0;µ))|g(qf,pf)〉〈g(q0,p0)| (2.4)

〈q|g(q0,p0)〉 ) (2π)n/4
(detΓ)1/4 exp[-(qT - q0

T)‚Γ‚(q - q0)

+ i
p
p0

T‚(q - q0)] (2.5)

D(q0,p0;qf,pf) ) 2-n/2[det(∂qf

∂q0
+ Γ-1‚

∂pf

∂p0
‚Γ - 2ip

∂qf

∂p0
‚Γ

- 1
2ip

Γ-1‚
∂pf

∂q0
)]1/2

(2.6)

M (t′) ) (∂q(t′)
∂q0

∂q(t′)
∂p0

∂p(t′)
∂q0

∂p(t′)
∂p0

) (2.7)

d
dt′M (t′) + F(t′)‚M (t′) ) 0 (2.8a)

M (0) ) (1 0
0 1) (2.8b)

F(t′) ) (0 -m-1

∂
2V

∂q2|
t′

0 ) (2.9)
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Note that the propagatorU(t;µ) contains contributions from
all classical trajectories in phase space. The classical dynamics
is governed by Hamilton’s equations, namely

and the equation of motion for the classical action is

The classical forward-backward motion in phase space is
simple. Starting from (q0,p0) at time 0, the trajectory lands at
(qt,pt

F) at the timet and then evolves from (qt,pt) backward to
reach the phase point (qf,pf) when the total time returns to zero.
The essential physics lies in the dynamics in an infinitesimal
time domain around the intermediate timet. According to the
equations of motion, all coordinates and momenta evolve
continuously except at timet. At that instant the momentum
undergoes a jump equal to the amount

where B′t ≡ ∂B(qt)/∂qt. Finally, the action at the timet
increments by the amount

whereBt ≡ B(qt). If the operatorB is a constant equal toB0, all
trajectories return to their original point at the final time. In
that caseU(t;µ) ) exp(iµB0), namely, the propagator is a
multiplier independent of time.

At this point we return to eq 2.1, the derivative expression
of the Heisenberg operatorBH. Because the final phase space
variables as well as the action in eq 2.4 depend on the parameter
µ, we may divideBH into three parts corresponding to the
derivatives of the prefactorD(q0,p0;qf,pf), the actionS(q0,p0;µ),
and the final coherent state|g(qf,pf)〉, respectively. The correla-
tion function eq 1.1 can also be partitioned into three terms
accordingly

Using the fact that asµ approaches zero the trajectories become
continuous at the midpoint, i.e., (qf,pf) f (q0,p0), Sf 0, andD
f 1, we readily obtain

and

To proceed, we examine the stability matrix in the neighbor-
hood ofµ ) 0. Expanding through linear terms, one finds

where1 is the n × n identity matrix. The derivatives∂qf/∂pt

etc. are elements of the stability matrix that corresponds to the
backward evolution, i.e., the final point (qf,pf) depends on the
initial condition (qt,pt) of the backward trajectory. At this stage
we do not evaluate the derivative∂pt/∂µ explicitly, as we wish
to allow an arbitrary momentum jump. By inserting these
expressions into eq 2.6 and using the following relation

which holds for any matrixR and an infinitesimal variation
δR, the derivative of the prefactor takes the following form:

Inserting this expression in eq 2.14a and integrating by parts,
we obtain

where it is assumed that〈g(q0,p0)|F(0)A|g(q0,p0)〉 f 0 as one
component of the coordinates or the momenta go to(∞.
Through some algebra one can show

and

Combining these results we may writeC1(t) in the compact form

Thus, the term in the correlation function arising from the
prefactor takes the form

dq
dt′ ) ∂

∂p
H(t′) ) m-1‚p (2.10a)

dp
dt′ ) - ∂

∂q
H(t′)

) - ∂

∂q
V(q) + pµδ(t′ - t)

∂

∂q
B(q) (2.10b)

dS
dt′ ) 1

2
pT‚m-1‚p - V(q) (2.10c)

δp ) pµB′t (2.11)

δS) pµBt (2.12)

C(t) ) C1(t) + C2(t) + C3(t) (2.13)

C1(t) ) -i(2πp)-n ∫dq0∫dp0
∂

∂µ
D(q0,p0;qf,pf)|µ)0

× 〈g(q0,p0)|F(0)A|g(q0,p0)〉 (2.14a)

C2(t) ) 1
p
(2πp)-n ∫dq0∫dp0

∂

∂µ
S(q0,p0;µ)|µ)0

× 〈g(q0,p0)|F(0)A|g(q0,p0)〉 (2.14b)

C3(t) ) -i(2πp)-n ∫dq0 ∫dp0

∂

∂µ
〈g(q0,p0)|F(0)A|g(qf,pf)〉|µ)0 (2.14c)

∂qf

∂q0
) 1 + µ ∂

∂q0
(∂qf

∂pt
‚
∂pt

∂µ) ∂qf

∂p0
) µ ∂

∂p0
(∂qf

∂pt
‚
∂pt

∂µ) (2.15)

∂pf

∂q0
) µ ∂

∂q0
(∂pf

∂pt
‚
∂pt

∂µ) ∂pf

∂p0
) 1 + µ ∂

∂p0
(∂pf

∂pt
‚
∂pt

∂µ) (2.16)

det(R + δR) ) detR(1 + Tr(R-1‚δR)) (2.17)

∂

∂µ
D(q0,p0;qf,pf) ) 1

4
Tr{ ∂

∂q0
(∂qf

∂pt
- 1

2ip
Γ-1‚

∂pf

∂pt
)‚

∂pt

∂µ

+ ∂

∂p0
(∂pf

∂pt
- 2ip

∂qf

∂pt
‚Γ)‚

∂pt

∂µ} (2.18)

C1(t) ) i
4
(2πp)-n ∫dq0 ∫dp0

∂pt
T

∂µ |µ)0

× [(∂qf
T

∂pt
- 1

2ip

∂pf
T

∂pt
‚Γ-1)‚ ∂

∂q0
+ (∂pf

T

∂pt
- 2ip

∂qf
T

∂pt
‚Γ)‚ ∂

∂p0
]

〈g(q0,p0)|F(0)A|g(q0,p0)〉 (2.19)

∂

∂q0
〈g(q0,p0)|F(0)A|g(q0,p0)〉 )

-4Γ‚q0〈g(q0,p0)|F(0)A|g(q0,p0)〉 + 2Γ‚〈g(q0,p0)|
[qF(0)A + F(0)Aq]g(q0,p0)〉 (2.20)

∂

∂p0
〈g(q0,p0)|F(0)A|g(q0,p0)〉 )

i
p

〈g(q0,p0)|[F(0)Aq - qF(0)A]|g(q0,p0)〉 (2.21)

C1(t) ) -i(2πp)-n ∫dq0 ∫dp0[〈g(q0,p0)|F(0)A|
|g(q0,p0)〉q0

T - 〈g(q0,p0)|F(0)AqT|g(q0,p0)〉]

× ∂

∂pt
(Γ‚qf - 1

2ip
pf)‚∂pt

∂µ|µ)0
(2.22)
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The derivative of the total action with respective to the
parameterµ can be evaluated straightforwardly:

which yields

where the contributionCqc(t) due to the delta pulse in the
effective Hamiltonian can be viewed as a quasiclassical cor-
relation function, namely, the Heisenberg operatorBH is replaced
by the classical counterpartB(t) in the definition ofC(t) eq 1.1.
The first term in eq 2.25 is proportional to the momentum jump,
while the second quasiclassical term arises from the net
increment of the action. In a similar manner we obtain an explicit
formula for C3(t):

Again, the integrand is seen to be proportional to the derivative
of the momentum jump, i.e.,

Adding eqs 2.23, 2.25, and 2.27 one sees that

Furthermore, comparison of the above results reveals that

from which it follows that

It is thus possible to eliminate the contribution of the prefactor
from the correlation function. To compensate for this omission,
the part of the correlation function that arises from the
momentum increment at the timet must be multiplied by 1/2.

As that part cannot be separated from the one arising from the
quasiclassical contribution associated with the change in the
action, this must be achieved by multiplying the momentum
increment by a factor of 1/2.

Equation 2.30 is the main result outlined in ref 17. The
correlation function is given by the expression

The trajectories follow the classical equations of motion with
the Hamiltonian H up to the time t, at which point the
momentum component jumps by the amount

for a small value of the finite difference parameterµ. At the
same time, the action increments by the full amount given by
eq 2.12. Subsequent evolution takes place in the negative time
direction, and the integrand is evaluated when the time parameter
reaches zero once again.

Equation 2.31 (along with the momentum and action jumps
given by eqs 2.32 and 2.12, respectively) is a rigorous
semiclassical formulation of correlation functions that uses
trajectories in combined forward-backward time for all degrees
of freedom. Its main advantage is that the contribution from
the prefactor is eliminated. As a consequence, the number of
equations to be solved scale linearly with the number of degrees
of freedom in the Hamiltonian. Note that the elimination of the
prefactor is achieved via anexact transformation of the
derivative form of the correlation function, resulting in an
expression wherethe momentum jump is one-half of that dictated
by the classical equations of motion. This transformation was
feasible because the derivative formulation in terms of a small
parameter allows linearization of the equations. It should be
noted that the prefactor is equal to the negative of the total
contribution from terms arising directly from the momentum
jump; these terms are extremely important, as the remaining
term is merely a quasiclassical contribution.

The combined forward-backward treatment of the correlation
function amounts to a stationary phase evaluation of the full
semiclassical expression, in which the individual forward and
backward time-evolution operators are treated via the Van Vleck
propagator. That full semiclassical formulation takes the form

whereqF,f,pF,f andqB,f,pB,f are the endpoints of the forward and
backward trajectories. OftenA andB are operators that depend
on only a few observable degrees of freedom (the “system”)
while the remaining coordinates constitute the environment (or
“bath”). Treating the intermediate integrations associated with
the bath components ofqB,pB via the stationary phase method
leads16 to an FBSD expression where the trajectories evolve
continuously in the space of the bath, while their system
component jumps at the intermediate timet. That procedure
amounts to an enormous simplification, as the cancellation
between the forward and the backward parts corresponding to
the dynamics of the solvent gives rise to small actions and thus

C1(t) ) ∫dq0 ∫dp0f1(q0,p0)‚
∂pt

∂µ|µ)0
(2.23)

∂S
∂µ|µ)0

) p
∂pt

T

∂µ |
µ)0

‚
∂qf

T

∂pt
‚p0 + pBt (2.24)

C2(t) ) (2πp)-n ∫dq0 ∫dp0(∂pt
T

∂µ |µ)0‚
∂qf

T

∂pt
‚p0 + pBt)

× 〈g(q0,p0)|F(0)A|g(q0,p0)〉

≡ ∫dq0∫dp0f2(q0,p0) ‚
∂pt

∂µ|µ)0
+ Cqc(t) (2.25)

C3(t) ) 2ip(2πp)-n ∫dq0 ∫dp0{[〈g(q0,p0)|F(0)A

|g(q0,p0)〉q0
T - 〈g(q0,p0)|F(0)AqT|g(q0,p0)〉]

× ∂

∂pt
(Γqf - 1

2ip
pf) - 1

2ip
p0

T‚
∂qf

T

∂pt

〈g(q0,p0)|F(0)A|g(q0,p0)〉}‚
∂pt

∂µ|µ)0
(2.26)

C3(t) ) ∫dq0 ∫dp0f3(q0,p0)‚
∂pt

∂µ|µ)0
(2.27)

C(t) ) ∫dq0 ∫dp0[f1(q0,p0) + f2(q0,p0) + f3(q0,p0)]

× ∂pt

∂µ|µ)0
+ Cqc(t) (2.28)

- 1
2
[f2(q0,p0) + f3(q0,p0)] ) f1(q0,p0) (2.29)

C(t) ) 1
2∫dq0 ∫dp0[f2(q0,p0) + f3(q0,p0)]

× ∂pt

∂µ|µ)0
+ Cqc(t) (2.30)

C(t) ) -i(2πp)-n ∂

∂µ∫dq0 ∫dp0 exp( i
p
S(q0,p0;µ))

× 〈g(q0,p0)|F(0)A|g(qf,pf)〉|µ)0 (2.31)

δpopt ) 1
2

pµB′t (2.32)

C(t) ) (2πp)-2n ∫dqF ∫dpF ∫dqB ∫dpBDF(qF,pF)

× DB(qB,pB) exp( i
p
S(qF,pF;qB,pB))〈g(qF,pF)|F(0)A

|g(qB,f,pB,f)〉〈g(qB,pB)|B|g(qF,f,pF,f)〉 (2.33)
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smooth integrands; at the same time, the integrand is more
oscillatory along the direction of the variables associated with
the probed system, and thus these integration variables must
be treated via a combination of Monte Carlo and quadrature
methods. Replacing the exact integration by the stationary phase
result wipes out the interference between multiple bounce
contributions across the forward and backward parts of the
dynamics and thus may degrade the accuracy if the potential
of the bath degrees of freedom is very anharmonic. However,
important interference between system trajectories is fully
accounted for in that scheme. Another way of arriving at FBSD
expressions where the system component of the momentum
jumps at the intermediate time while the trajectories remain
continuous in the space of the bath involves15 expressing the
operatorB in exponential form by invoking the Wigner-Weyl

representation20,21 and implementing FBSD for all degrees of
freedom. While the system components ofqB,pB are also treated
within the stationary phase method in that approach, the finite-
size momentum jumps permitted in the space of the system
allow for some interference between multiple bounce trajecto-
ries. The present formulation, which uses a derivative method
to exponentiate the operators, is simpler than all of the above
in that no additional integrations are introduced and, most
importantly, there is no prefactor to be computed. At the same
time, the prefactor-free FBSD described here cannot account
for interference between distinct trajectories of the forward and
reverse time propagators as the momentum jump performed at
the timet is infinitesimal in magnitude. As a consequence, the
present method is similar in spirit to the linearization ap-
proximation of Miller and co-workers,22,23 although the math-

Figure 1. (a) Real and imaginary parts of the correlation function of the O-H asymmetric stretch as obtained from the FBSD calculations. Error
bars indicate one standard deviation. Solid lines are guides to the eye only. (b) Real and imaginary parts of the correlation function of the O-H
symmetric stretch. (c) Real and imaginary parts of the correlation function of the H-O-H bend.
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ematical details differ and the present prefactor-free FBSD was
obtained via a rigorous semiclassical procedure. Sun et al.24 have
found that their linearization approximation, which also neglects
similar interference terms, captures the short time, transition-
state-like features of thermal rate constants correctly but fails
to describe nonclassical aspects of the recrossing dynamics
resulting from quantum interference on the time scale of two
or more vibrational periods. Our tests17 have demonstrated that
the prefactor-free FBSD leads to reasonably accurate results for
correlation functions in multidimensional potentials where
relaxation and dissipative effects tend to weaken interference
phenomena.

III. Application: Vibrational Dynamics of Water

The FBSD developed above is a general technique for
investigating dynamical properties of a system. In addition to
correlation functions, the quantum average at timet of any
observable corresponding to the operatorB can be evaluated
via eq 1.1 in whichA is set equal to the identity operator. In
the following we consider molecular vibrations of a molecule
or small cluster at low temperatures. Because vibrations are
collective motions, we focus on the numerical implementation
of the FBSD for calculating correlation functions of the type

whereQk is one of the normal modes of the system with respect
to the global potential minimum. It is a straightforward matter
to extend the procedure to the calculation of the dipole
correlation function if the functional form of the dipole moment
operator is available.

The initial density is constructed in terms of the ground
vibrational state,F(0) ) |Ψ0〉〈Ψ0|, which factorizes in the
normal mode representation

wheren ) 3N - 6, N being the total number of atoms andωj

the normal-mode frequencies. We takeΓ as a diagonal matrix
with elements equal toωj/2p. Carrying out the Gaussian
integrals, one readily obtains

and

These expressions are inserted into eq 2.28 in numerical
calculations.

It is convenient to retain the normal mode coordinates for
the representation of the FBSD correlation function. The RWK2
potential25 which has been designed for calculating vibrational
spectra of water clusters is adopted in our work. That potential
consists of the Morse oscillator potential from the intramolecular
interaction plus atom-atom interactions and Coulomb terms
between point charges from the intermolecular interaction. The
classical equations of motion are solved in normal mode
coordinates. Our previous work17 showed that it is feasible to
sample the initial conditions via a Metropolis procedure with
the absolute value of eq 3.4 being the weight function. Here
for fast convergence we invoke the Genz-Monahan algorithm
developed specifically for higher dimensional integrals over
unbounded regions with Gaussian weight.26 Their approach is
based on the stochastic spherical-radial rules for integrations.
We report the results of the method described in the previous
section for a single water molecule as well as two- and four-
molecule clusters using 2500 trajectories for each degree of
freedom. The largest of these systems has 30 active degrees of
freedom and thus the calculation involves a 60-dimensional
integral which is evaluated with a total of 150 000 trajectories.

Figure 1 shows the correlation functions of the three
vibrational modes of a water molecule, namely the O-H
asymmetric stretch, O-H symmetric stretch, and H-O-H bend,
obtained via the prefactor-free FBSD scheme described in
section II. Figure 2 shows the sum of the three correlation
functions. Since rotational degrees of freedom evolve on a

Figure 2. Real and imaginary parts of the sum of the three correlation functions.
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slower time scale, this sum represents a good approximation to
the correlation function for the normal mode vector of water.

The fundamental frequencies of vibrations can be estimated
from these figures. The frequencies for the O-H asymmetric
stretch, O-H symmetric stretch, and H-O-H bend are about
3658, 3573, and 1576 cm-1, respectively. Comparing with the
results of the normal-mode analysis, which are 3922, 3817, and
1639 cm-1, respectively, we see strong red shifts due to the
anharmonicity of the system. It is clearly shown in these figures
that anharmonic interactions affect the dynamics within about
10 fs. In addition, one observes energy transfer from the O-H
asymmetric stretch to the nearly resonant O-H symmetric
stretch during the initial 40 fs. This time is still short for the
H-O-H bend to be involved in the process of energy
redistribution in the molecule.

Figures 3 and 4 show similar results for the water dimer and
tetramer, respectively. The stable configuration of the tetramer
is cyclic. We also find red shifts (mainly due to intramolecular
vibrations) for the studied normal modes. This observation is
in agreement with the results from the self-consistent field
calculations by Jung and Gerber.27 In the dimer, the hydrogen
bond induces an increment of the amplitude and a decrement
of the frequency for one of the OH stretches in the donor. In
general, the larger number of degrees of freedom leads to
stronger mixing among the normal modes during evolution. All
figures exhibit imaginary parts comparable in size to the real
parts of the correlation functions. This behavior is a manifesta-
tion of the quantum mechanical aspect of the dynamics at zero
temperature. It is remarkable that the error bars are small in all
cases, even though the number of samples per integration

Figure 3. (a) Real and imaginary parts of the correlation functions: the two O-H stretches of the donor in the water dimer. (b) Real and imaginary
parts of the correlation functions: the two O-H stretches of the acceptor in the water dimer. (c) Real and imaginary parts of the correlation
functions of the two H-O-H bends in the water dimer.
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variable is rather small. Most importantly, the size of the error
bars is seen to be a slowly varying function of cluster size. This
is very encouraging for performing FBSD calculations with truly
large systems.

IV. Concluding Remarks

We have presented a rigorous, yet practical methodology for
calculating semiclassical correlation functions or expectation
values. The key features of this approach are (a) the combined
treatment of the forward and backward time evolution operators,
which guarantee a smooth integrand amenable to Monte Carlo
sampling, and (b) the absence of a semiclassical prefactor which
leads to linear scaling. Starting from a derivative formulation
of the correlation function, it was shown that the prefactor
amounts toexactly one-halfof the combined semiclassical phase
and initial density terms proportional to the momentum jump
at the end of the forward evolution. As a consequence, using
momentum increments of half the magnitude dictated from the
classical equations of motion cancels the contribution from the
semiclassical determinant. Given the near elimination of the sign
problem and the linear scaling with system size, the prefactor-
free FBSD opens the way to large-scale simulations in real time.

Implementation of the prefactor-free methodology is straight-
forward. If the coherent state matrix element involving the initial
density is known, one uses its absolute value as a sampling
function to carry out a stochastic procedure for the integrals,
say, selecting initial conditions via a Metropolis random walk.
After integrating to the desired propagation timet, trajectories
incur an instantaneous discontinuity and subsequently continue
in the backward time direction until the time origin is reached.
Evaluation of the required derivative by a two-point finite
difference formula requires a single calculation. As the finite
difference parameter is infinitesimal, the corresponding mo-
mentum jump and resulting forward-backward action are small.
These facts ensure excellent Monte Carlo statistics with modest
numbers of samples.

Application to the vibrational dynamics of a water molecule
was employed to illustrate the practicality of the scheme. The
correlation functions of the normal modes were computed for
several oscillation periods. The calculations give rise to a large
imaginary component of the correlation functions. Such imagi-

nary components are of purely quantum mechanical origin, as
classical correlation functions are always real-valued. If the
dipole moment operator is known to a reasonable approximation,
the real part of correlation function can be used to extract
spectral line shapes. Future work in our group will deal with
similar investigations in molecular clusters.
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Figure 4. Real and imaginary parts of the correlation function of the O-H stretch with the highest frequency in the water tetramer.
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